Anatomical investigation of potential contacts between climbing fibers and cerebellar Golgi cells in the mouse
نویسندگان
چکیده
Climbing fibers (CFs) originating in the inferior olive (IO) constitute one of the main inputs to the cerebellum. In the mammalian cerebellar cortex each of them climbs into the dendritic tree of up to 10 Purkinje cells (PCs) where they make hundreds of synaptic contacts and elicit the so-called all-or-none complex spikes controlling the output. While it has been proven that CFs contact molecular layer interneurons (MLIs) via spillover mechanisms, it remains to be elucidated to what extent CFs contact the main type of interneuron in the granular layer, i.e., the Golgi cells (GoCs). This issue is particularly relevant, because direct contacts would imply that CFs can also control computations at the input stage of the cerebellar cortical network. Here, we performed a systematic morphological investigation of labeled CFs and GoCs at the light microscopic level following their path and localization through the neuropil in both the granular and molecular layer. Whereas in the molecular layer the appositions of CFs to PCs and MLIs were prominent and numerous, those to cell-bodies and dendrites of GoCs in both the granular layer and molecular layer were virtually absent. Our results argue against the functional significance of direct synaptic contacts between CFs and interneurons at the input stage, but support those at the output stage.
منابع مشابه
Non-synaptic signaling from cerebellar climbing fibers modulates Golgi cell activity
Golgi cells are the principal inhibitory neurons at the input stage of the cerebellum, providing feedforward and feedback inhibition through mossy fiber and parallel fiber synapses. In vivo studies have shown that Golgi cell activity is regulated by climbing fiber stimulation, yet there is little functional or anatomical evidence for synapses between climbing fibers and Golgi cells. Here, we sh...
متن کاملLight Microscopy, Scanning and Transmission Electron Microscopy of Vertebrate Cerebellar Golgi Cells
The cerebellar Golgi cells of mouse, teleost fish, primate and human species have been studied by means of light and Golgi light microscopic techniques, slicing technique, ethanol-cryofracturing and freeze fracture methods for scanning electron microscopy and ultrathin sectioning for transmission electron microscopy. The Golgi cells appeared in the granular layer as polygonal, stellate, round o...
متن کاملMicrolesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum.
Cerebellar Purkinje cells have two distinct action potentials: complex spikes (CSs) are evoked by single climbing fibers that originate from the contralateral inferior olive. Simple spikes (SSs) are often ascribed to mossy fiber-granule cell-parallel fiber inputs to Purkinje cells. Although generally accepted, this view lacks experimental support. Vestibular stimulation independently activates ...
متن کاملThe function of cerebellar Golgi cells revisited.
The inhibitory interneurons of the cerebellar cortex have received very little attention compared to the granule and Purkinje cells, and Golgi cells are no exception. Theoretical considerations of the function of Golgi cell functions have evolved little since from the late sixties and experimental studies were sparse until the last few years. Recent modeling and in vivo experimental studies by ...
متن کاملImmunohistochemistry of GluR1 subunits of AMPA receptors of rat cerebellar nerve cells.
The localization of GluR1 subunits of ionotropic glutamate receptors in the glial cells and inhibitory neurons of cerebellar cortex and their association with the climbing and parallel fibers, and basket cell axons were studied. Samples of P14 and P21 rat cerebellar cortex were exposed to a specific antibody against GluR1 subunit(s) ofAMPA receptors and were examined with confocal laser scannin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2013